Low-Rank Matrices on Graphs: Generalized Recovery & Applications
نویسندگان
چکیده
Many real world datasets subsume a linear or non-linear low-rank structure in a very low-dimensional space. Unfortunately, one often has very little or no information about the geometry of the space, resulting in a highly under-determined recovery problem. Under certain circumstances, state-of-the-art algorithms provide an exact recovery for linear low-rank structures but at the expense of highly inscalable algorithms which use nuclear norm. However, the case of non-linear structures remains unresolved. We revisit the problem of low-rank recovery from a totally different perspective, involving graphs which encode pairwise similarity between the data samples and features. Surprisingly, our analysis confirms that it is possible to recover many approximate linear and non-linear low-rank structures with recovery guarantees with a set of highly scalable and efficient algorithms. We call such data matrices as Low-Rank matrices on graphs and show that many real world datasets satisfy this assumption approximately due to underlying stationarity. Our detailed theoretical and experimental analysis unveils the power of the simple, yet very novel recovery framework Fast Robust PCA on Graphs.
منابع مشابه
Compressive PCA on Graphs
Randomized algorithms reduce the complexity of low-rank recovery methods only w.r.t dimension p of a big dataset Y ∈ <p×n. However, the case of large n is cumbersome to tackle without sacrificing the recovery. The recently introduced Fast Robust PCA on Graphs (FRPCAG) approximates a recovery method for matrices which are low-rank on graphs constructed between their rows and columns. In this pap...
متن کاملGeneralized phase retrieval : measurement number, matrix recovery and beyond
In this paper, we develop a framework of generalized phase retrieval in which one aims to reconstruct a vector x in R or C through quadratic samples x∗A1x, . . . ,x ∗ANx. The generalized phase retrieval includes as special cases the standard phase retrieval as well as the phase retrieval by orthogonal projections. We first explore the connections among generalized phase retrieval, low-rank matr...
متن کاملLink Prediction in Graphs with Autoregressive Features
In the paper, we consider the problem of link prediction in time-evolving graphs. We assume that certain graph features, such as the node degree, follow a vector autoregressive (VAR) model and we propose to use this information to improve the accuracy of prediction. Our strategy involves a joint optimization procedure over the space of adjacency matrices and VAR matrices which takes into accoun...
متن کاملLink Prediction in Graphs with Autoregressive Features
In the paper, we consider the problem of link prediction in time-evolving graphs. We assume that certain graph features, such as the node degree, follow a vector autoregressive (VAR) model and we propose to use this information to improve the accuracy of prediction. Our strategy involves a joint optimization procedure over the space of adjacency matrices and VAR matrices which takes into accoun...
متن کاملMultilinear Low-Rank Tensors on Graphs & Applications
We propose a new framework for the analysis of lowrank tensors which lies at the intersection of spectral graph theory and signal processing. As a first step, we present a new graph based low-rank decomposition which approximates the classical low-rank SVD for matrices and multilinear SVD for tensors. Then, building on this novel decomposition we construct a general class of convex optimization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1605.05579 شماره
صفحات -
تاریخ انتشار 2016